reddit-mentions

Reddit Mentions Signal Schema

Source: autobound-reddit-company bucket

Last validated: 2026-01-08

signal_type: redditMentions bucket: autobound-reddit-company association: company description: Reddit discussions and mentions about companies refresh: monthly coverage: 2,000,000 companies

All 14 subtypes (validated against GCS)

subtypes:

  • buyingIntent
  • churnRisk
  • competitorMention
  • implementationHelp
  • industryTrend
  • integrationNeed
  • negativeReview
  • painPoint
  • positiveReview
  • pricingConcern
  • productFeedback
  • securityConcern
  • supportIssue
  • useCase

No top-level signal_category

categories: []

All 33 fields (validated against GCS)

fields:

Core fields

  • path: signal_id type: string description: Unique identifier for this signal
  • path: signal_type type: string description: Always "redditMentions"
  • path: signal_subtype type: string description: Signal subtype (see subtypes list)
  • path: detected_at type: string (ISO 8601) description: When signal was detected
  • path: association type: string description: Always "company"

Company object

  • path: company.name type: string description: Company name
  • path: company.domain type: string description: Company website domain
  • path: company.linkedin_url type: string description: LinkedIn company URL
  • path: company.industries type: array[string] description: Industry classifications
  • path: company.employee_count_low type: integer description: Lower bound of employee count
  • path: company.employee_count_high type: integer description: Upper bound of employee count
  • path: company.description type: string description: Company description

Data object - scores

  • path: data.salience_score type: float (0.0-1.0) description: How relevant/actionable the signal is
  • path: data.confidence_score type: float (0.0-1.0) description: Confidence in signal accuracy
  • path: data.recency_score type: float (0.0-1.0) description: How recent the discussions are

Data object - context

  • path: data.summary type: string description: AI-generated summary of discussions
  • path: data.sentiment type: string description: "Overall sentiment: positive, negative, mixed, neutral"
  • path: data.urgency type: string description: "Signal urgency: high, medium, low"
  • path: data.buying_stage type: string description: Buyer journey stage
  • path: data.audience_type type: string description: Target audience type

Data object - engagement

  • path: data.total_upvotes type: integer description: Total upvotes across posts
  • path: data.total_comments type: integer description: Total comments across posts
  • path: data.post_count type: integer description: Number of posts analyzed
  • path: data.upvote_ratio type: float description: Upvote ratio

Data object - evidence & sources

  • path: data.evidence type: array[string] description: Key quotes from discussions
  • path: data.source_urls type: array[string] description: Links to source threads
  • path: data.subreddits type: array[string] description: Relevant subreddits
  • path: data.topics type: array[string] description: Topic tags
  • path: data.post_date type: string (ISO 8601) description: Date of the post
  • path: data.post_author type: string description: Reddit username of post author
  • path: data.post_flair type: string description: Reddit post flair/tag
  • path: data.objection_type type: string description: Type of objection (price, features, etc.)
  • path: data.competitors_mentioned type: array[string] description: Competitors mentioned in discussion

Schema notes:

- Uses snake_case for field names (salience_score, not salienceScore)

- Has rich scoring system (salience, confidence, recency)

- Includes post metadata (author, date, upvote_ratio)

- Docs had camelCase but GCS uses snake_case